Search results for "odorant binding"

showing 10 items of 16 documents

The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae

2021

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…

0106 biological sciences0301 basic medicineModels MolecularProteomicsProteomeOdorant bindingProtein ConformationInsectLigandsReceptors Odorant01 natural scienceschemistry.chemical_compoundTetranychus urticaeBiology (General)SpectroscopyPhylogenymedia_commonmass spectrometryGeneticsbiologyligand-bindingMolecular Structurespider mitesGeneral MedicineTetranychus urticaeComputer Science ApplicationsChemistryConiferyl aldehydedisulfide bridgesTetranychidaeProtein Bindingspider mites.QH301-705.5media_common.quotation_subjectodorant-binding proteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesSpider mite<i>Tetranychus urticae</i>AnimalsAmino Acid SequencePhysical and Theoretical ChemistryQD1-999Molecular BiologySpiderOrganic Chemistrybiology.organism_classification010602 entomology030104 developmental biologychemistryVarroa destructorOdorantsChelicerataInternational Journal of Molecular Sciences
researchProduct

Coupling transcriptomics and behaviour to unveil the olfactory system of Spodoptera exigua larvae

2020

AbstractChemoreception in insects is crucial for many aspects related to food seeking, enemy avoidance, and reproduction. Different families of receptors and binding proteins interact with chemical stimuli, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), odorant binding proteins (OBPs) and chemosensory proteins (CSPs). In this work, we describe the chemosensory-related gene repertoire of the worldwide spread pest Spodoptera exigua (Lepidoptera: Noctuide) focusing on the transcripts expressed in larvae, which feed on many horticultural crops producing yield losses. A comprehensive de novo assembly that includes reads from chemosensory organs of larva…

0106 biological sciencesMaleOlfactory systemanimal structuresOdorant bindingmedia_common.quotation_subject[SDV]Life Sciences [q-bio]Gene ExpressionOlfactionInsectSpodopteraSpodopteraReceptors Odorant01 natural sciencesBiochemistryLepidoptera genitaliaTranscriptomeBeet armywormExiguaAnimalsRNA-SeqPheromone bindingAcroleinGeneEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUSmedia_commonGeneticsGenomic LibraryPropiophenonesbiologyGene Expression ProfilingfungiGeneral Medicinebiology.organism_classification010602 entomologyOrgan SpecificityLarvaOdorantsNoctuidaeInsect ProteinsFemaleHexanolsTranscriptome010606 plant biology & botany
researchProduct

The 40-Year Mystery of Insect Odorant-Binding Proteins

2021

International audience; The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthpar…

0301 basic medicineInsectaChemoreceptorOdorant bindinglcsh:QR1-502Gene ExpressionReviewInsectReceptors OdorantBiochemistryPheromoneslcsh:MicrobiologytasteSexual Behavior Animal0302 clinical medicinemedia_commonbiologyRihanichemosensory functionsArthropod mouthparts3. Good healthCell biologyDrosophila melanogasterodorant-protein-binding assayInsect ProteinsPheromoneDrosophila melanogasterolfactionmedia_common.quotation_subjectK.OlfactionFerveurEvolution Molecularnon-chemosensory functions03 medical and health sciencesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyL. The 40-Year Mystery of Insect Odorant-Binding Proteins insectMolecular BiologyJ.-F.fungiBriandTransporterbiology.organism_classificationodorantprotein-binding assayHematopoiesis030104 developmental biologyinsect[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryBiomolecules
researchProduct

Stability of OBPs

2020

Odorant binding proteins (OBPs) are small proteins, some of which bind odorants with high specificity. OBPs are relatively easy to produce and show a pronounced stability toward thermal and chemical denaturation. This high stability renders OBPs attractive candidates for the development of odorant detections systems. Unfortunately, binding of odorants is not easy to quantify due to lack of spectroscopic signals upon binding. Therefore, a possible approach to detect binding is to employ the shift in thermal or chemical stability upon ligand-protein interaction. Being a rather indirect approach, the experimental setup should be done with care. Here, the experimental results on stability of OB…

0303 health sciences03 medical and health sciencesOdorant bindingChemistry030303 biophysicsBiophysicsDenaturation (biochemistry)Chemical stabilityThermal stabilityStability (probability)
researchProduct

Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and…

2012

A joint approach that combines molecular modelling and fluorescence spectroscopy is used to study the affinity of an odorant binding protein towards various odorant molecules. We focus on the capability of molecular modelling to rank odorants according to their affinity with this protein, which is involved in the sense of smell. Although ligand-based approaches are unable to propose an accurate model attending to the strength of the bond with the odorant-binding protein, receptor-based structures considering either static or dynamic structure of the protein perform equally to discriminate between good, medium and low affinity odorants. Such approaches will be useful for further rational des…

0303 health sciencesbiology010405 organic chemistryOdorant bindingChemistrymusculoskeletal neural and ocular physiologyRational designGeneral ChemistryComputational biologyOlfactionLigand (biochemistry)01 natural sciences0104 chemical sciences03 medical and health sciencesLow affinityBiochemistryOdorant-binding proteinbiology.proteinpsychological phenomena and processes030304 developmental biologyFood ScienceFlavour and Fragrance Journal
researchProduct

Odorant binding changes the electrical properties of olfactory receptors at the nanoscale

2021

Olfactory receptors (ORs) comprise the largest multigene family in the vertebrates. They belong to the class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs), which are the most abundant membrane proteins, having widespread, significant roles in signal transduction in cells, and therefore, they are a major pharmacological target. Moreover, ORs displayed high selectivity and sensitivity towards odorant detection, a characteristic that raised the interest for developing biohybrid sensors based on ORs for the detection of volatile compounds. The transduction of odorant binding into cellular signaling by ORs is not well understood and knowing its mechanism would enable developin…

Cell signalingOlfactory receptorOdorant bindingChemistryolfactory receptorodorant bindingImpedance parameterslaw.invention[SDV.AEN] Life Sciences [q-bio]/Food and Nutritionmedicine.anatomical_structureopen-circuit voltagelawelectrochemical scanning tunneling microscopy (EC-STM)impedance[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineBiophysicsScanning tunneling microscope[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]ReceptorTransduction (physiology)[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectrochemical potential
researchProduct

Site-directed mutagenesis of odorant-binding proteins

2020

Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in …

ChemistryOdorant bindingBinding pocketMutagenesis (molecular biology technique)Computational biologyAmino acid residueSite-directed mutagenesis
researchProduct

Identification and cloning of odorant binding proteins from the scarab beetle Phyllopertha diversa.

1999

Abstract Wehave identified, cloned, and characterized two odorant binding proteins from the pale brown chafer, Phyllopertha diversa. One of the proteins (OBP1, 116 amino acids long) showed high amino acid identity (>90%) to two previously identified PBPs from scarab beetles. The second protein (OBP2) showed limited sequence similarity to lepidopteran and dipteran OBPs, but contained only 133 amino acids. Both proteins showed the occurrence of six highly conserved cysteines; electrospray mass spectral data suggested they are all bound in three disulfide bonds. During purification, OBP2 separated into several isoforms; N-terminal amino acid sequencing and electrospray ionization mass spectrom…

Gene isoformOdorant bindingElectrospray ionization1Molecular Sequence DataBiophysicsPhyllopertha diversaReceptors Odorantelectrospray mass spectrometryBiochemistryBombykolbombykolpheromonechemistry.chemical_compoundconformational changeBombyx moriAnimalsAmino Acid SequenceCloning MolecularMolecular Biologychemistry.chemical_classificationCloningbiologySequence Homology Amino Acid3H)-quinazolinedionefungi3-dimethyl-2Cell Biologybiology.organism_classificationRecombinant ProteinsjaponilureAmino acidColeopteraMolecular WeightchemistryBiochemistryOdorantsPheromone4-(1HSequence AlignmentBiochemical and biophysical research communications
researchProduct

Electrochemical detection of the 2-isobutyl-3-methoxypyrazine model odorant based on odorant-binding proteins: The proof of concept

2014

Abstract We developed an electrochemical assay for the detection of odorant molecules based on a rat odorant-binding protein (rOBP3). We demonstrated that rOBP3 cavity binds 2-methyl-1,4-naphtoquinone (MNQ), an electrochemical probe, as depicted from the decrease of its electrochemical signal, and deduced the dissociation constant, Kd MNQ  = 0.5(± 0.2) μM. The amount of MNQ displaced from rOBP3 by 2-isobutyl-3-methoxypyrazine (IBMP), a model odorant molecule, was measured using square-wave voltammetry. The release of MNQ by competition led to an increase of the electrochemical response. In addition, this method allowed determination of the dissociation constant of rOBP3 for IBMP, Kd IBMP  =…

Models MolecularIsothermal microcalorimetryOdorant bindingBiophysicsAnalytical chemistryCalorimetryReceptors OdorantElectrochemistryBinding CompetitiveCaffeic AcidsElectrochemistryPhysical and Theoretical ChemistryVoltammetryBinding SitesChemistryVitamin K 3Electrochemical TechniquesGeneral MedicineCombinatorial chemistryFluorescenceRecombinant ProteinsDissociation constantImmobilized ProteinsSpectrometry FluorescencePyrazinesCalibrationTitrationBiosensorBioelectrochemistry
researchProduct

Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

2012

Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50) values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major cat…

Models MolecularProteomicsProteomeTranscription GeneticOdorant bindingProtein ConformationApplied Microbiologylcsh:MedicinePathogenesismedicine.disease_causeReceptors OdorantBiochemistryProtein structureBacillus thuringiensislcsh:SciencePhylogenyTriboliumMultidisciplinaryImmune System ProteinsSpectrometric Identification of ProteinsbiologyChemosensory proteinAgricultureHost-Pathogen InteractionLarvaHost-Pathogen InteractionsInsect ProteinsResearch Articleanimal structuresProtein subunitLipoproteinsBacterial ToxinsMolecular Sequence DataBacillus thuringiensisMicrobiologyBacterial ProteinsRibosomal proteinMicrobial ControlDefense ProteinsmedicineAnimalsAmino Acid SequencePesticidesBiologyToxinfungilcsh:RProteinsbiology.organism_classificationMolecular biologyApolipoproteinsOdorant-binding proteinbiology.proteinlcsh:QPest ControlSequence AlignmentZoologyEntomologyProtein AbundancePLoS ONE
researchProduct